
NOTE: This disposition is nonprecedential.

United States Court of Appeals
for the Federal Circuit

DATATERN, INC.,
Plaintiff-Appellant,

v.

EPICOR SOFTWARE CORPORATION,
Defendant-Appellee,

AND

INFORMATICA CORPORATION,

Defendant-Appellee,

AND

CARL WARREN & CO., INC.,
Defendant-Appellee,

AND

LANCET SOFTWARE DEVELOPMENT, INC.,

Defendant-Appellee,

AND

TERADATA CORPORATION,
Defendant-Appellee,

AND

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 2

PREMIER HEALTHCARE SOLUTIONS, INC.

(formerly known as Premier, Inc.)
Defendant-Appellee,

AND

MICROSTRATEGY, INC.,

Defendant-Appellee,

AND

AIRLINES REPORTING CORPORATION,
Defendant-Appellee,

AND

BLAZENT, INC.,

Defendant,

AND

MAGIC SOFTWARE ENTERTAINMENT, INC.,
AND MAGIC SOFTWARE ENTERTAINMENT, LTD,

Defendants.

2013-1251, -1252

Appeals from the United States District Court for the
District of Massachusetts in Nos. 11-CV-11970 and 11-
CV-12220, Judge F. Dennis Saylor, IV.

Decided: December 19, 2014

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 3

ERIK PAUL BELT, McCarter & English, LLP, of Boston,
Massachusetts, argued for plaintiff-appellant. With him
on the brief was LEE CARL BROMBERG.

ADAM J. KESSEL, Fish & Richardson P.C., of Boston,

Massachusetts, argued for all defendant-appellees. On
the brief for defendant-appellee Epicor Software Corpora-
tion was STEPHEN R. BUCKINGHAM, Lowenstien Sandler
LLP, of Roseland, New Jersey. On the brief for defend-
ant-appellee Informatica Corporation were J. DAVID
HADDEN, DARREN E. DONNELLY, RYAN TYZ, and PHILLIP J.
HAACK, Fenwick & West LLP, of Mountain View, Califor-
nia. On the brief for defendant-appellee Carl Warren &
Co., Inc. was BRIAN P. VOKE, Campbell Campbell Edwards
& Conroy, of Boston, Massachusetts. On the brief for
defendant-appellee Lancet Software Development, Inc.
were MICHAEL C. MCCARTHY and KEIKO L. SUGISAKA,
Maslon Edelman Borman & Brand, LLP, of Minneapolis,
Minnesota. On the brief for defendant-appellee Teradata
Corporation was CRAIG R. SMITH, Lando & Anastasi LLP,
of Cambridge, Massachusetts. On the brief for defendant-
appellee Premier Healthcare Solutions, Inc., was
MATTHEW E. LENO, McDermott Will & Emery LLP, of
Boston, Massachusetts. On the brief for defendant-
appellee Microstrategy Inc., was BENJAMIN K. THOMPSON,
Fish & Richardson P.C., of Atlanta, Georgia. On the brief
for defendant-appellee Airlines Reporting Corporation
was DOMINIC MASSA, Wilmer Cutler Pickering Hale &
Dorr, of Boston, Massachusetts.

Before LOURIE, MOORE, and CHEN, Circuit Judges.

MOORE, Circuit Judge.

DataTern appeals from the district court’s entry of
summary judgment that defendants do not infringe the

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 4

asserted claims of U.S. Patent No. 6,101,502. Because the
claim construction is incorrect, we vacate and remand.

BACKGROUND

In the consolidated cases underlying this appeal,
DataTern sued MicroStrategy and several of its customers
(collectively, MicroStrategy) for infringing various claims
of the ’502 patent. At the same time, DataTern was
involved in a declaratory judgment action involving the
’502 patent in the United States District Court for the
Southern District of New York. The New York court
construed certain terms of the ’502 patent, including the
only term at issue on appeal in this case—“to create at
least one interface object.” Microsoft Corp. v. DataTern,
Inc., No. 11-cv-2365, 2012 WL 3682915, at *7–8 (S.D.N.Y.
Aug. 24, 2012) (New York Markman Order). It construed
this term to mean, “to generate code for at least one class
and instantiate an object from that class, where the object
is not part of or generated by the object oriented applica-
tion and is used to access the database.” Id. (emphasis
added). In the present case, DataTern conceded that, if
the district court in this case were to adopt the New York
court’s construction of “to create at least one interface
object,” then defendants do not infringe because they do
not “generate code for at least one class and instantiate
an object from that class.” The district court granted
summary judgment of noninfringement based solely on
this concession. DataTern, Inc. v. MicroStrategy, Inc., No.
11-11970-FDS (D. Mass. Feb. 7, 2013), ECF No. 108
(Summary Judgment Order). DataTern appeals. We
have jurisdiction under 28 U.S.C. § 1295(a)(1).

DISCUSSION

The ’502 patent is directed to interfacing an object
oriented software application to access data stored in a

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 5

relational database. ’502 patent col. 1 ll. 22–24, 53–55.
An object oriented application cannot easily interface with
a relational database because of the structural differences
between the objects in the application and the tables in
the database. Id. col. 1 ll. 25–49. To solve this problem,
the ’502 patent discloses creating “interface objects” that
act as intermediaries between the object oriented applica-
tion and the relational database. Id. col. 2 ll. 34–38. The
patent discloses selecting an “object model,” generating a
map between the database schema and the object model,
and creating the interface object using the map. Id. col. 2
ll. 28–34, 40–44. A “runtime engine” accesses data in the
relational database using the interface object. Id. col. 2 ll.
34–38, Fig. 1. Claim 1 is representative:

A method for interfacing an object oriented soft-
ware application with a relational database, com-
prising the steps of:

selecting an object model;

generating a map of at least some relationships
between schema in the database and the selected
object model;

employing the map to create at least one interface
object associated with an object corresponding to a
class associated with the object oriented software
application; and

utilizing a runtime engine which invokes said at
least one interface object with the object oriented
application to access data from the relational da-
tabase.

Id. claim 1 (emphasis added).

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 6

The dispute in this case centers on the construction of
“to create at least one interface object” as used in claim 1
and the ’502 patent. The New York court construed this
term to mean “to generate code for at least one class and
instantiate an object from that class . . . ,”1 New York
Markman Order at *7–8, and the district court in this
case adopted that construction and granted summary
judgment of noninfringement, Summary Judgment Order
at 2. The construction requires a two-step process: (1)
generating code for a class; and (2) instantiating an object
from that class. In support of this construction, the New
York court noted that the phrase “employing the map”
preceded “to create at least one interface object,” meaning
the map must be used to create the interface object. New
York Markman Order at *7. It then reasoned that, in the
embodiment of Figure 1 (below), the only way to generate
interface objects (20) from the map (12) is through the
code generator (18). Id. It recognized that Figure 1 also
shows interface objects (20) connected to map (12) via
runtime engine (24) without using code generator (18),
but concluded that interface objects were not generated
along this path in Figure 1 because “interface objects only

1 The construction of this term included a further
limitation, “where the object is not part of or generated by
the object oriented application and is used to access the
database,” based on a purported disclaimer in the prose-
cution history of the ’502 patent. New York Markman
Order at *7–8. The parties do not argue the correctness of
this portion of the construction or otherwise explain how
it would affect the infringement issue before us. Indeed,
DataTern’s concession of noninfringement was limited
only to the first portion of the construction related to code
generation for creating a class. J.A. 77–78. Thus, we
express no opinion as to whether the further limitation
included in the construction is correct.

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 7

come out of the code generator.” Id. It also cited
DataTern’s expert’s concession that he was not aware of
any embodiments of the ’502 patent “that do not require
code generation.” Id.

We review claim construction de novo. Lighting Bal-
last Control LLC v. Philips Elecs. N. Am. Corp., 744 F.3d
1272, 1276–77 (Fed. Cir. 2014) (en banc). We construe
claim terms to have their ordinary and customary mean-
ing, i.e., the meaning the term would have to a person of
ordinary skill in the art in the context of the entire patent
specification and its prosecution history. Phillips v. AWH
Corp., 415 F.3d 1303, 1313 (Fed. Cir. 2005) (en banc).

We hold that the district court’s construction of “to
create at least one interface object” is incorrect. The plain
language of the term and the context of the ’502 patent
both support the construction that “to create at least one
interface object” is “to instantiate at least one interface
object from a class.” Claim construction begins with the
plain language of the claims. The verb “to create” is
readily understandable in common English and synony-
mous with “to make.” The particular meaning of “to
create” in the context of claim 1 of the ’502 patent is
informed by what is being created, in this case an inter-
face object. As both parties agree, in object oriented
applications, objects are created from classes by a process
called “instantiation” and each object is said to be an

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 8

“instance” of its class. See Decl. of Neeraj Gupta at ¶ 9,
DataTern, Inc. v. MicroStrategy Inc., No. 11-12220-RGS
(D. Mass. June 11, 2012), ECF No. 60 (referring to objects
as “instances of data structures” and describing how these
“object instances” perform the tasks required of the object
oriented application); id. ¶ 20 (“Interface objects may be
instantiated from pre-existing classes, or as in the pre-
ferred embodiment, from generated classes.”); Appellees’
Br. at 10–11 (discussing “‘objects’ that are created from
‘classes’” via a “process . . . known as instantiation”). The
specification and claims reinforce that objects are created
by instantiation from classes. They refer repeatedly to
various objects as an “object instance” or simply an “in-
stance.” ’502 patent col. 2 ll. 55, col. 4 ll. 30–60, claims 22,
44; see also id. col. 6 ll. 20–40 (disclosing an object “aD-
slObject” being instantiated from the class “DPerson”);
Appellees’ Br. 24 (“[A] business object instantiates an
object of the DPerson class, named aDslObject.”); Reply
Br. 13–15. In the New York case, DataTern stipulated to
a construction of “class” as a “definition that specifies
attributes and behavior of objects, and from which objects
can be instantiated.” J.A. 90. Thus, the plain meaning,
specification, and record evidence support the conclusion
that “to create at least one interface object” requires
instantiating the interface object from a class.

To the extent, however, that the district court re-
quired generating code for a class as part of the claim step
of creating “at least one interface object,” it erred. To be
clear, to instantiate an object from a class, you must have
a class. That class, however, could be preexisting, or it
could be generated as part of the overall object-creation
process. The patentee chose to claim the instantiation of
the object in the method step “to create at least one inter-
face object.” It did not, in this claim, limit the manner or
timing in which the class comes into existence. Claim 1
recites a step of creating an interface object, but it does

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 9

not recite a preceding step of generating code for a class
or, for that matter, generating code at all. Claim 1 is
silent regarding code generation in connection with creat-
ing the interface object. In contrast, another independent
claim recites using a “code generator” to create at least
one interface object. ’502 patent claim 10. We recognize
that claims 1 and 10 differ in scope in other aspects.
Nonetheless, viewing claim 1 in the context of claim 10
demonstrates that when the inventors of the ’502 patent
wanted to limit the claims to require code generation,2
they did so explicitly. This suggests that claim 1 should
not be so limited.

The phrase “employing the map” preceding the limita-
tion at issue does not change this analysis. The parties
debate the significance of this phrase, particularly in the
context of the Figure 1 embodiment. MicroStrategy
argues that “employing the map,” together with Figure 1,
requires generating code for a class because the only way
to create interface objects using the map in Figure 1 is
through code generator 18, which MicroStrategy asserts
generates code for a class.3 DataTern argues that Figure
1 discloses a second path where runtime engine 24 uses

2 We note that even claim 10 requires a “code gen-
erator” without reciting what type of code is generated.
Even claim 10 does not expressly require generating code
for a class.

3 We note that “it is improper to read limitations
from a preferred embodiment described in the specifica-
tion—even if it is the only embodiment—into the claims
absent a clear indication in the intrinsic record that the
patentee intended the claims to be so limited.” Liebel-
Flarsheim Co. v. Medrad, Inc., 358 F.3d 898, 913 (Fed.
Cir. 2004).

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 10

the map 12 to create interface objects 20, without using
code generator 18.

Figure 1 and the specification’s sparse description of it
do not support either party’s contentions. The entirety of
the description pertinent to this argument is:

A code generator 18 is employed to examine the
relationships that are defined in the map 12 and a
model object oriented interface associated with an
object oriented software application 22 to generate
interface objects 20. The interface objects 20 are
employed by the object oriented software applica-
tion 22 to access the relational database 16 via a
runtime engine 24, which also uses the map 12 to
drive its processing.

’502 patent col. 2 ll. 32–38.

This portion of the specification explains that the code
generator generates interface objects, and that the object
oriented application, through the runtime engine, uses
the map and interface objects to access the relational
database. It does not disclose, as DataTern contends, that
the runtime engine in Figure 1 generates objects using
the map without using the code generator. It also does
not disclose, as MicroStrategy contends, that generating
code for a class is the only way to generate interface
objects. In fact, neither Figure 1 nor the corresponding
discussion in the specification even states that the code
generator generates code for a class. Figure 1 does not
support the district court’s conclusion that the patentee
intended code generation for a class to be a part of the
claimed step of creating an interface object.

Figure 7, moreover, discloses an embodiment in which
the runtime engine creates the interface object via a

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 11

process that does not include code generation for a class.
MicroStrategy argues that Figure 7 is irrelevant to the
construction of “to create at least one interface object”
because Figure 7 only shows the operation of the runtime
engine. Oral Argument at 20:09–20:28, available at
http://oralarguments.cafc.uscourts.gov/default.aspx?fl=20
13-1251.mp3. It contends that the runtime engine only
performs the last step of claim 1, which expressly recites
“utilizing a runtime engine,” but not any of the other
steps that do not include this requirement. We disagree.
While MicroStrategy is correct that Figure 7 describes the
operation of the runtime engine, ’502 patent col. 2 ll. 23–
24, claim 1 does not specify what performs the step of
“employing the map to create at least one interface ob-
ject.” And it certainly does not preclude the runtime
engine from doing so. The final two steps of claim 1
recite:

employing the map to create at least one interface
object associated with an object corresponding to a
class associated with the object oriented software
application; and

utilizing a runtime engine which invokes said at
least one interface object with the object oriented
application to access data from the relational da-
tabase.

Id. claim 1. The final step must be performed by the
runtime engine, but claim 1—a method claim—is agnostic
as to what performs the employing step. Again, this is in
contrast to claim 10, which expressly requires the code
generator to create the interface object and the runtime
engine to invoke the interface object.

Figure 7 supports a construction that does not require
generating code for a class because it describes an embod-

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 12

iment where the runtime engine employs the map to
create an interface object from a preexisting class (i.e.,
without generating code for a class). At a high level,
Figure 7 (below) discloses a multi-step process by which
the runtime engine creates an object (steps 61–64) and
uses the generated object to retrieve data (steps 65–68).
’502 patent col. 6 ll. 31–64.

As part of this process, Figure 7 discloses the instan-
tiation of an interface object “aDslObject” from a class
“DPerson.” ’502 patent Fig. 7 (steps 61–64), col. 6 ll. 31–
44; Appellees’ Br. at 24 (“[A] business object instantiates
an object of the DPerson class, named aDslObject.”);
Reply Br. at 13–15. The specification describes Figure 7
as “the sequence of actions that take place when a busi-
ness object creates a Dsl object,” using the same verb—
“create”—as claim 1. ’502 patent col. 6 ll. 31–32 (empha-
sis added). As described in Figure 7, the interface object
aDslObject is created by instantiating that object from the
class DPerson. Generating DPerson itself is not part of
the creation process. Generation of the underlying class
is not what the specification refers to when it describes

DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 13

“creat[ing]” an object. In fact, the specification clearly
delineates between class generation and object creation or
instantiation. For example, DPerson—the class from
which the interface object aDslObject is instantiated—is
described as “the generated . . . class.” ’502 patent col. 6 l.
36. Of course, common sense dictates that at some point,
code must be generated for the DPerson class—it cannot
miraculously come into existence without being generat-
ed. But Figure 7 describes generating code for a class and
instantiating an object from that class as two different
steps, and that the latter step creates the interface object.

Figure 7 also discloses “employing the map” to create
the interface object. The steps used to generate the
interface object (steps 61–64) use “AttrInfo” objects, which
come from the map, to set certain object attributes to
default levels. ’502 patent col. 6 ll. 38–40, Figs. 4, 5
(showing AttrInfo as part of the map). Thus, Figure 7
shows employing the map to create the interface object.

CONCLUSION

For the foregoing reasons we construe “to create at
least one interface object” as “to instantiate at least one
interface object from a class.”4 Because the district court
incorrectly construed the claim term upon which
DataTern stipulated to noninfringement, we vacate the

4 DataTern has raised a legitimate argument that
MicroStrategy improperly relied on evidence of record in
the New York case that is not of record in this case. We
need not reach this issue, however, because the evidence
in the New York case that MicroStrategy cites would not
have changed the construction mandated by the plain
language of claim 1, the ’502 patent, and the evidence of
record in this case.

 DATATERN, INC. v. EPICOR SOFTWARE CORPORATION 14

grant of summary judgment of noninfringement and
remand for proceedings consistent with this opinion.

VACATED AND REMANDED

